Optimal approximation of sparse hessians and its equivalence to a graph coloring problem

نویسنده

  • S. Thomas McCormick
چکیده

We consider the problem of approximating the Hessian matrix of a smooth non-linear function using a minimum number of gradient evaluations, particularly in the case that the Hessian has a known, fixed sparsity pattern. We study the class of Direct Methods for this problem, and propose two new ways of classifying Direct Methods. Examples are given that show the relationships among optimal methods from each class. The problem of finding a non-overlapping direct cover is shown to be equivalent to a generalized graph coloring problem--the distance-2 graph coloring problem. A theorem is proved showing that the general distance-k graph coloring problem is NP-Complete for all fixed k >2, and hence that the optimal non-overlapping direct cover problem is also NP-Complete. Some worst-case bounds on the performance of a simple coloring heuristic are given. An appendix proves a well-known folklore result, which gives lower bounds on the number of gradient evaluations needed in any possible approximation method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Iterative Approximations of Solution for Generalized Yosida Approximation Operator

In this paper, we introduce and study a generalized Yosida approximation operator associated to H(·, ·)-co-accretive operator and discuss some of its properties. Using the concept of graph convergence and resolvent operator, we establish the convergence for generalized Yosida approximation operator. Also, we show an equivalence between graph convergence for H(·, ·)-co-accretive operator and gen...

متن کامل

REPORTS IN INFORMATICS ISSN 0333-3590 Graph Coloring in Optimization Revisited

We revisit the role of graph coloring in modeling problems that arise in efficient estimation of large sparse Jacobian and Hessian matrices using both finite difference (FD) and automatic differentiation (AD) techniques, in each case via direct methods. For Jacobian estimation using column partitioning, we propose a new coloring formulation based on a bipartite graph representation. This is com...

متن کامل

New Acyclic and Star Coloring Algorithms with Application to Computing Hessians

Acyclic and star coloring problems are specialized vertex coloring problems that arise in the efficient computation of Hessians using automatic differentiation or finite differencing, when both sparsity and symmetry are exploited. We present an algorithmic paradigm for finding heuristic solutions for these two NP-hard problems. The underlying common technique is the exploitation of the structur...

متن کامل

A one - to - one correspondence between potential solutions of the cluster deletion problem and the minimum sum coloring problem , and its application to P 4 - sparse graphs ∗

In this note we show a one-to-one correspondence between potentially optimal solutions to the cluster deletion problem in a graph G and potentially optimal solutions for the minimum sum coloring problem in G (i.e. the complement graph of G). We apply this correspondence to polynomially solve the cluster deletion problem in a subclass of P4-sparse graphs that strictly includes P4-reducible graphs.

متن کامل

Parallel Distance-k Coloring Algorithms for Numerical Optimization

Matrix partitioning problems that arise in the efficient estimation of sparse Jacobians and Hessians can be modeled using variants of graph coloring problems. In a previous work [6], we argue that distance-2 and distance3 2 graph coloring are robust and flexible formulations of the respective matrix estimation problems. The problem size in large-scale optimization contexts makes the matrix esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 1983